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Abstract. Data-dependent rotations have been found to be a useful
component for designing block cipher including MARS and RC6, two
candidates for AES. Existing analysis indicates that data-dependent ro-
tations play an important role in thwarting di�erential and linear at-
tacks. In this paper, we study di�erential properties of data-dependent
rotations, and derive a complete characterization of all possible charac-
teristics for the operation. We also compare the use of data-dependent
rotations in MARS and RC6.

1 Introduction

Data-dependent rotations have been found to be a useful component for de-
signing block ciphers including MARS [3] and RC6 [11], two candidates for the
Advanced Encryption Standard (AES). Implementation-wise, data-dependent
rotations can be performed quickly in both software and hardware. Security-
wise, they appear to be a powerful tool in preventing both di�erential and linear
cryptanalysis.

Studies on data-dependent rotations in recent years are perhaps due to the
publication of RC5 [10] which makes extensive use of data-dependent rotations.
Since RC5 was proposed, various studies [2, 5, 6, 7, 8, 9, 12] have provided
a greater understanding of how RC5's structure and operations, in particular
data-dependent rotations, contribute to its security.

Linear approximations of data-dependent rotations have been well analyzed
in the literature [7, 9, 12], and a complete characterization of all possible linear
approximations for the operation was given in [9]. These results show that the
mixed use of rotations and some other basic operations (e.g., addition) is a very
e�ective way of thwarting linear cryptanalysis.

Characteristics and di�erentials of data-dependent rotations have also been
studied, mostly in the context of di�erential attacks against RC5 [2, 6, 8]. All
these attacks assumed that di�erences (in a characteristic or a di�erential) never
occur in any \rotation amount." Such a choice is based on the heuristic argument
that once a di�erence occurs in some rotation amount, the output di�erence



after that rotation operation will look essentially random, and so the resulting
characteristic or di�erential will not be useful in a di�erential attack. However,
there was no analytic proof to justify the above heuristic.

In this paper, we focus our analysis on di�erential properties of data-dependent
rotations. In particular, we derive a complete characterization of all possible out-
put di�erences that may occur when a di�erence is in the rotation amount. Our
main results show that the output di�erence is uniformly distributed over a very
large set of size at least 2w=2 where w is the word size. In other words, when
a di�erence occurs in the rotation amount, all possible characteristics for the
data-dependent rotation hold with equal and very small probability. So our re-
sults provide an analytical quanti�cation for the e�ectiveness of data-dependent
rotations in preventing di�erential attacks.

We also discuss how data-dependent rotations are used in MARS and RC6.
A noticeable feature of both ciphers is that the rotations are used in combina-
tion with multiplication. More speci�cally, a rotation amount is derived from the
result of a multiplication. Such an approach ensures that any input di�erence to
the multiplication is very likely to produce a di�erence in the rotation amount
because of the good di�usion property of multiplication. So our results on the
di�erential properties of rotations also provide a good justi�cation for the com-
bined use of data-dependent rotations and multiplication. Indeed, both MARS
and RC6 seem to have strong security against di�erential cryptanalysis [3, 4].

2 The encryption routines in MARS and RC6

Here we give brief descriptions of the encryption routines in MARS and RC6,
both of which make extensive use of data-dependent rotations. First, we intro-
duce the notation for the basic operations that are used in the two ciphers. We
use lgw to denote base 2 logarithm of w.

a+ b integer addition modulo 2w

a� b bitwise exclusive-or of w-bit words
a� b integer multiplication modulo 2w

a<<<b rotate the w-bit word a to the left by the amount
given by the least signi�cant lgw bits of b

2.1 MARS

The cipher consists of 32 rounds of Type-3 Feistel network, divided into three
phases: forward mixing, \cryptographic core," and backward mixing. The cryp-
tographic core of MARS has 16 iterative rounds, and each round uses a keyed
E-function which is described in Table 1. Two data-dependent rotations and one
multiplication are used in each E-function.



E-function of MARS

Input: a 32-bit variable in
two 32-bit subkeys key1; key2

output: three 32-bit variables L;R;M

Procedure: 1. M = in + key1
2. R = (in<<<13)� key2 (multiplication)
3. i = lowest 9 bits of M
4. L = S[i]
5. R = R<<<5
6. M =M<<<R (data-dependent rotation)
7. L = L�R

8. R = R<<<5
9. L = L�R

10. L = L<<<R (data-dependent rotation)

Table 1. E-function of MARS

2.2 RC6

A version of RC6 is speci�ed as RC6-w/r/b where the word size is w bits, en-
cryption consists of a nonnegative number of rounds r, and b denotes the length
of the encryption key in bytes. The key schedule of RC6 expands the user sup-
plied secret key into a set of subkeys S[0], : : :, S[2r+3]. The encryption routine
of RC6 consists of pre-whitening, 20 iterative rounds, and post-whitening. The
round function of RC6 is given in Table 2. Two data-dependent rotations and
two multiplications are used in each round.

3 Di�erential properties of data-dependent rotations

All published di�erential attacks on ciphers using data-dependent rotations as-
sumed that di�erences never occur in the rotation amounts. This is quite a
natural assumption, since a di�erence in the rotation amounts would seem to
produce a random looking output di�erence.

In this section, we provide an analytical proof that justi�es the above heuristic
argument. Our main result is a complete characterization of all possible output
di�erences that may occur when a di�erence is in the rotation amount. This
allows us to compute precisely the probability of any characteristic for the data-
dependent rotations. In particular, when the di�erence occurs in the rotation
amounts, all possible characteristics for the data-dependent rotations hold with
very small probability. As a consequence, all di�erentials with small Hamming



Round function of RC6

Input: four w-bit variables A;B;C;D
two w-bit round keys S[2i], S[2i + 1]

Output: four w-bit variables A;B;C;D

Procedure: 1. B = B � (2B + 1) (multiplication)
2. B = B<<< lgw
3. D = D � (2D + 1) (multiplication)
4. D = D<<< lgw
5. A = A�B

6. A = A<<<D (data-dependent rotation)
7. A = A+ S[2i]
8. C = C �D

9. C = C<<<B (data-dependent rotation)
10. C = C + S[2i+ 1]
11. (A;B;C;D) = (B;C;D; A)

Table 2. Round function of RC6

weight hold with very small probability. So our results quantify the e�ectiveness
of data-dependent rotations in preventing di�erential attacks.

3.1 Distribution of the output di�erence

Given a pair of inputs (X1; R1) and (X2; R2) where Xi is a word being rotated
by the value Ri, we're interested in understanding the output di�erence in terms
of the input di�erences. We call the input di�erences X 0 and R0 and the output
di�erence Y 0. This is summarized in the following equations.

Y1 = X1<<<R1;

Y2 = X2<<<R2;

X 0 = X1 �X2;

R0 = R1 �R2;

Y 0 = Y1 � Y2:

We also introduce the variable

r0 = (R2 �R1) mod w:

As we will see in the analysis, the variable r0 is directly related to the probability
of the characteristics for data-dependent rotations. Note that \a di�erence is not
in the rotation amount" is equivalent to r0 = 0 or R0 mod w = 0.



For a �xed input di�erence X 0, let us consider the possible output di�erences
Y 0. Since Y 0 appears to depend on the two rotation amounts R1 and R2, this
motivates us to de�ne the function

fX0;R1;R2(X1) = (X1<<<R1)� ((X1 �X 0)<<<R2)

= (X1<<<R1)� (X1<<<R2)� (X 0<<<R2)

which, for �xed X 0, R1, and R2, expresses the output di�erence in terms of the
input X1. We also de�ne

IX0;R1;R2 = fY 0 : Y 0 = fX0;R1;R2(X1) for some X1g;

NX0;R1;R2 = size of the set IX0;R1;R2 ;

PX0;R1;R2(Y
0) = fX1 : fX0;R1;R2(X1) = Y 0g:

That is, IX0;R1;R2 is the set of output di�erences Y 0 when X1 ranges over all
possible values and PX0;R1;R2(Y

0) is the set of inputs X1 which yield output
di�erence Y 0. The letters I and P stand for image and pre-image, respectively.

Theorem1. (1) NX0;R1;R2 = 2w�gcd(w;r0).

(2) For any Y 0 2 IX0;R1;R2 , the size of the set PX0;R1;R2(Y
0) is 2gcd(w;r

0).

Before proving the theorem, we �rst discuss some of its implications by con-
trasting the case where r0 = 0 with the case where r0 6= 0:

1. r0 = 0. The di�erence is not in the rotation amount.
In this case, we have gcd(w; r0) = w and NX0;R1;R2 = 1. In other words,
there is only one possible output di�erence Y 0. All the characteristics used in
existing di�erential attacks on RC5, RC6 and MARS belong to this category.

2. r0 6= 0. The di�erence is in the rotation amount.
In this case, gcd(w; r0) is a power of 2 between 1 and w=2. Hence, NX0;R1;R2

ranges between 2
w

2 and 2w�1, and each possible output di�erent di�erence
occurs exactly the same number of times. In other words, the output di�er-
ence Y 0 is uniformly distributed in a set of size at least 2

w

2 when the pair of
inputs with a �xed di�erence ranges over all possible values.

From the above comparison, we can see that a di�erence in the rotation
amount is spread out in the output di�erence in a drastic way.

We now move on to the proof of Theorem 1. We will recall some facts from
group theory to simplify our understanding of the set of output di�erences
IX0;R1;R2 . The set of w�bit words form a group isomorphic to Zw

2 under the
operation of exclusive-or. For a �xed integer r, the function h(X) = X<<<r is a
homomorphism: it has the property that h(X�Y ) = h(X)�h(Y ). The function
p(X) = parity(X) is a homomorphism from Zw

2 to Z2, and the kernel of p is the
subgroup of even parity words, isomorphic to Zw�1

2 . Exclusive-oring any odd
parity word to this subgroup yields the coset of odd parity words.



Proof of Theorem 1:We have IX0;R1;R2 = f(X1<<<R1)�(X1<<<R2)�(X
0<<<R2)g.

By replacing X1 with the same value rotated right by R1, we get a more conve-
nient de�nition of the set:

IX0;R1;R2 = fX1 � (X1<<<r
0)� (X 0<<<R2)g:

Since (X 0<<<R2) is a constant for �xed X 0 and R2, the structure of IX0;R1;R2

is determined by
g(X1) = X1 � (X1<<<r

0): (1)

Let
S = fg(X1) : X1 is a w-bit wordg:

It is easy to verify that g is a homomorphism from the group of w�bit words (a
group isomorphic to Zw

2 ) to S, and S is a subgroup.
First, consider the special case where r0 is odd. We claim that in this case S

is isomorphic to Zw�1
2 . To prove this, we only need to show that the kernel of g

has exactly two elements. The kernel consists of the X1's satisfying

X1 = X1<<<r
0:

This property implies conditions on the bits of X1: bit 0 must be the same as bit
r0, bit 1 must be the same as bit r0 + 1 mod w, and so on. Since r0 is relatively
prime to w, we have that all bits must be the same, showing that the kernel is
the two elements containing all 0's and all 1's.

Therefore, S is a subgroup isomorphic to Zw�1
2 . In particular, it is the sub-

group of even parity words, and IX0;R1;R2 is the coset of words having the same

parity as (X 0<<<R2). Hence NX0;R1;R2 = 2w�1 = 2w�gcd(w;r0). The second part
of the theorem follows from elementary group theory.

For the general case, we write r0 = 2ir where r is odd. Then we can show
that 2gcd(w;r

0) = 22
i

is the size of the kernel of g, where the kernel elements are
of the form ajaj : : : ja and a can be any 22

i

values for a 2i�bit vector (there are
w=2i a's concatenated). 2

3.2 Characteristics

Based on Theorem 1, we can easily compute the probability of any characteristic
for the data-dependent rotations when the di�erence is in the rotation. For a
binary vector X , we will use jX j to denote the Hamming weight of X .

Theorem2. For i = 1; 2, let Yi = Xi<<<Ri. Let r
0 = (R2 � R1) mod w. Then

each characteristic holds with either probability 0 or probability 2gcd(w;r
0)�w.

Note that for w = 32, the above theorem implies that the probability of any
characteristic is at most 2�w=2 = 2�16 when the di�erence occurs in the rotation
amount.

Corollary 3. For i = 1; 2, let Yi = Xi<<<Ri. Let r0 = (R2 � R1) mod w. If
jX 0j = 0, then the probability that jY 0j = 0 is 2gcd(w;r

0)�w.



The following two corollaries follow from the proof of Theorem 1, since the
parity of Y 0 must be the same as the parity of X 0.

Corollary 4. For i = 1; 2, let Yi = Xi<<<Ri. Let r0 = (R2 � R1) mod w. If
jX 0j = 0, then the probability that jY 0j = 1 is 0.

Corollary 5. For i = 1; 2, let Yi = Xi<<<Ri. Let r0 = (R2 � R1) mod w. If
jX 0j = 1, then the probability that jY 0j = 0 is 0.

3.3 Di�erentials with small Hamming weights

From Theorem 2, we know that when the di�erence is in the rotation amount, all
possible characteristics for data-dependent rotations hold with equal and very
small probability. We now turn our attention towards di�erentials for the data-
dependent rotations. This section will focus on di�erentials of Hamming weight
one. The analysis can be extended to more general di�erentials.

Theorem6. For i = 1; 2, let Yi = Xi<<<Ri. Let r0 = (R2 � R1) mod w and
write r0 = 2ir where r is odd. For a given input di�erence X 0 such that jX 0j = 1,
the probability that jY 0j = 1 is p = 1

2w�lg(w)�2i+i
.

Proof. The probability of the di�erential is

p =
size of the set fY 0 : Y 0 2 IX0;R1;R2 and jY 0j = 1g

NX0;R1;R2 = 2w�2i
: (2)

To evaluate the numerator, we rewrite Y 0 using the de�nition of g(X1) given in
Equation 1.

Y 0 = g(X1)� (X 0<<<R2):

Since jX 0j = 1, there are only two possibilities for jg(X1)j in order to have
jY 0j = 1. That is, (1) jg(X1)j = 0, and (2) jg(X2)j = 2, and one of the two 1-bits
in g(X1) lines up with the 1-bit in X 0.

We claim that the set of values of g(X1) with Hamming weight 2 are those
words in which the two 1-bits are a multiple of 2i positions apart from each
other. It is not di�cult to see that any word with Hamming weight 2 in which
the two 1's are a multiple of 2i positions apart from each other belongs to the set
S. The more challenging part is showing that these are the only Hamming weight
two words within the set S. We start by considering the \�rst" such word of this
form: 1 + 2i. This word, along with all rotations of it, generate the subgroup S,
which has size 2w�2i . In fact, one basis for S consists of this word rotated left
by j positions for j = 0 to w � 2i � 1. g(x) cannot contain a Hamming weight
2 word where the 1's are a distance 2i�1 apart (for example), since that would

cause it to generate a subgroup of size 2w�2i�1

which is larger than the subgroup
under consideration.

Completing the proof, the size of the set fg(X1) : jg(X1)j = 2 and jY 0j = 1g
is w

2i � 1, since one of 1-bits in g(X1) lines up with the 1-bit in X 0 and there
are exactly w

2i � 1 positions for the other bit \1". Adding on the one case where
g(x) = 0, the numerator of equation 2 becomes w

2i and hence the probability is
1

2w�lg(w)�2i+i
. 2



Corollary 7. Let the word size w = 32. If jX 0j = 1 and there is a di�erence in
the rotate amounts, then the probability that jY 0j = 1 is � 2�15.

Similar analysis shows that, for data-dependent rotations, all di�erentials
with small Hamming weight hold with very small probability if there is a dif-
ference in the rotation amount. Therefore, it seems very unlikely that such dif-
ferentials could be helpful to improve existing di�erential attacks on RC5, RC6,
and MARS.

4 The use of data-dependent rotations in MARS and

RC6

In this section we discuss the use of data-dependent rotations in MARS and
RC6. Before doing so, we �rst consider how the data-dependent rotation is used
in RC5, which actually provides some good insight into the design of RC6 and
MARS.

Perhaps two of the most distinguishing features of RC5 are the heavy use
of data-dependent rotations and exceptional simplicity in its design. While no
practical attack on RC5 has been found, existing studies provide some theoretical
di�erential style attacks, generally based on the fact that the rotation amounts
in RC5 only depend on the few least signi�cant bits in a word. This particular
problem in using data-dependent rotations have motivated researchers to �nd
better ways of using data-dependent rotations that can take full advantages of
the operation.

MARS and RC6 are indeed two such examples. Interestingly, the approach
that is used in both ciphers to \strengthen" data-dependent rotations is some-
what similar. In particular, the approach is to combine data-dependent rotations
with integer multiplication.

Let us now take a closer look at how the rotation amounts are derived in
MARS and RC6. There two data-dependent rotations in each round of MARS,
and also two in each round of RC6. For ease of comparison, we let r1 and r2
denote the two rotation amounts in each round of both ciphers. We use R[s::t]
to denote bits s through t of R.

In MARS, r1 and r2 are computed from the result of multiplication between
an intermediate value and a subkey. More precisely,

R = in� key2;

r1 = R[31::27];

r2 = R[26::22]:

In RC6, r1 and r2 are computed from the result of two data-dependent mul-
tiplications, respectively, where the data are some intermediate values. More
precisely,

B = B � (2B + 1);



D = D � (2D + 1));

r1 = B[31::27];

r2 = D[31::27]:

To summarize, MARS uses a keyed linear function (of the data), while RC6
uses a keyless quadratic function (of the data). Even though the way how mul-
tiplication is introduced is quite di�erent in the two ciphers, they both take
advantage of the good di�usion property of multiplication. In particular, the
high order bits of the output from multiplication are used as subsequent rota-
tion amount. For both the linear function in MARS and the quadratic function
in RC6, it has been shown [3, 4] that any input di�erence in the data will result
a di�erence in one of the high order bits of the output with high probability.
Based on our results on di�erential properties of data-dependent rotations, we
can conclude that combining multiplication with data-dependent rotation is a
very e�ective way of preventing di�erential attacks.
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